Properties of Radical Functions

These notes are intended as a summary of section 2.1 (p. 82 - 89) in your workbook. You should also read the section for more complete explanations and additional examples.

Radical Functions

A radical function has the form

$$y = \sqrt{f(x)}$$

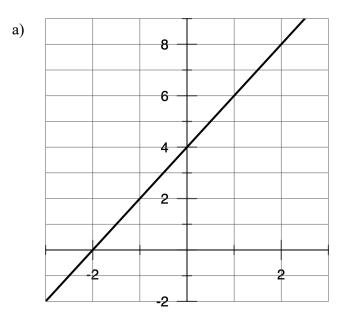
where f(x) is a function. Since we can't take the square root of a negative number, the domain of $y = \sqrt{f(x)}$ is the set of values of x for which $f(x) \ge 0$.

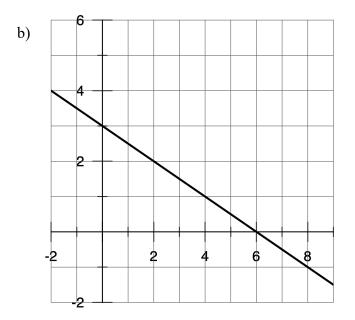
Graphs of Radical Functions

On p. 83 of the workbook, there are two graphs of radical functions. Take a few moments to examine these graphs and discuss.

The graphs of y = f(x) and $y = \sqrt{f(x)}$ always have certain characteristics in common:

- 1. If 0 and 1 are in the range of y = f(x), then points with these *y*-coordinates are on both graphs. These are known as **invariant points**.
- 2. Where the graph of y = f(x) is between the line y = 1 and the x-axis, the graph of $y = \sqrt{f(x)}$ is above the graph of y = f(x).
- 3. Where the graph of y = f(x) is above the line y = 1, the graph of $y = \sqrt{f(x)}$ is below the graph of y = f(x).
- 4. Where the graph of y = f(x) is below the x-axis, the graph $y = \sqrt{f(x)}$ does not exist.

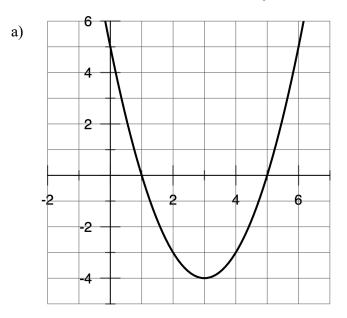

These characteristics can be used to sketch a graph of $y = \sqrt{f(x)}$ when the graph of y = f(x) is given.

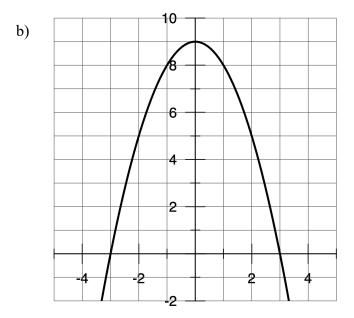

Graphing a Radical Function Given a Linear Function

Example 1 (sidebar p. 84)

For each graph of y = f(x) below:

- Sketch the graph of $y = \sqrt{f(x)}$.
- State the domain and range of $y = \sqrt{f(x)}$.

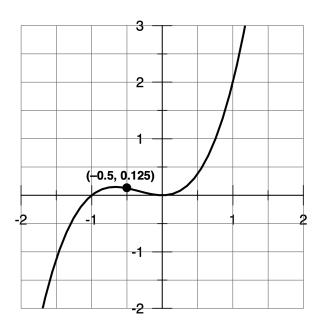



Graphing a Radical Function Given a Quadratic Function

Example 2 (sidebar p. 86)

For the graph of each quadratic function y = f(x) below:

- Sketch the graph of $y = \sqrt{f(x)}$. State the domain and range of $y = \sqrt{f(x)}$. •
- ٠



Graphing a Radical Function Given a Cubic Function

Example 3 (sidebar p. 88)

For the graph of the cubic function y = f(x):

- Sketch the graph of $y = \sqrt{f(x)}$.
- State the domain and range of $y = \sqrt{f(x)}$.

Solving Radical Equations

The graphs of radical functions can be used to solve related radical equations.

Example 4 (sidebar p. 89)

Use graphing technology to solve: $\sqrt{3x+2} = -6 + x$. Give the solution to the nearest tenth.

Homework: #5, 8 - 10, 12 in the section 2.1 exercises (p. 90 - 97). Answers on p. 98.